Table 1. Details of data collection and structure refinement
Syntex $R 3$
Graphite plate
Mo $K \alpha, 0.7107$
$25,5-30$

Yes
$0.139-0.084$
$\omega / 2 \theta$
1.2
$2-35(-18 \leq h \leq 18,-8 \leq k \leq 8,-11 \leq$
$\quad l \leq 11)$
5706
1411 in $P n a 2_{1}$ and 759 in Pnma
64 in Pna2 ${ }_{1}$ and 41 in Pnma
0.126
$w=\left[\sigma^{2}(F)+0.0002 F^{2}\right]$
0.047
$S H E L X T L$ (Sheldrick, 1983$)$
$0.0182(0.0179)$ in Pna2
$0.0207(0.0214)$ in Pnma
0.004
$2.13,-0.62$

Table 2. Atom coordinates $\left(\times 10^{4}\right)$ and temperature factors $\left(\AA^{2} \times 10^{3}\right)($ e.s.d.'s are in parentheses and refer to the final digits quoted)
Equivalent isotropic U_{eq} defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

	x	y		U_{eq}
Cd	$2158(1)$	2500	$450(1)$	$11(1)$
\mathbf{P}	$9108(1)$	2500	$-1048(1)$	$9(1)$
$\mathrm{O}(1)$	$9064(2)$	2500	$2131(4)$	$14(1)$
$\mathrm{O}(2)$	$10443(2)$	2500	$-2263(4)$	$13(1)$
$\mathrm{O}(3)$	$8443(1)$	$4455(2)$	$-2355(3)$	$13(1)$
Li	0	0	5000	$28(2)$

We are greatly indebted to Professor Dr H . Wondratschek who allowed the data collection in his Laboratory at Karlsruhe, to Dr I. D. Williams who performed the second-harmonic generation tests in Professor S. K. Kurtz's Laboratory and also to Professor S. C. Abrahams for fruitful discussions

Table 3. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in the LiCdPO_{4} structure

Symmetry code: (i) $x, 0.5-y, z$; (ii) $-x,-y,-z$; (iii) $1-x, y, z$; (iv) $1-x, y-0.5,-z$; (v) $x-1,0.5-y, 1+z$; (vi) $x-1, y$, $-(0.5+z)$; (vii) $x-0.5,0.5-y,-(0.5+z)$.

* For reading the values of $\mathrm{O}-\mathrm{Li}-\mathrm{O}$ angles the following rule should be used: the notation $\mathrm{O}(A, B, C)-\mathrm{Li}-\mathrm{O}\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$ means that the angles concerned are $\mathrm{O}(A)-\mathrm{Li}-\mathrm{O}\left(A^{\prime}\right), \mathrm{O}(B)-\mathrm{Li}-\mathrm{O}\left(B^{\prime}\right)$ and $\mathrm{O}(C)-\mathrm{Li}-\mathrm{O}\left(C^{\prime}\right)$.
and particularly for recommending us to continue the refinement in space group Pnma.

References

Dougherty, J. P. \& Kurtz, S. K. (1976). J. Appl. Cryst. 9, 145-158.
Elammari, L., Elouadi, B. \& Depmeier, W. (1988). Acta Cryst. C44, 1357-1359.
Sheldrick, G. M. (1983). SHELXTL. Program for crystal structure determination. Univ. of Göttingen, Germany.
Williams, I. D. (1989). Private communication.

Acta Cryst. (1992). C48, 542-543

Structure of 1,3-Propanediammonium Tetrachlorocobaltate(II)

By Guo Ning, Lin Yong-Hua, Zeng Guang-Fu and Xi Shi-Quan
Changchun Institute of Applied Chemistry, Academia Sinica, 130022 Changchun, People's Republic of China

(Received 3 February 1991; accepted 18 July 1991)

Abstract

CoCl}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right], \quad M_{r}=276.87\), monoclinic, $P 2_{1} / n, \quad a=10.703$ (2), $\quad b=10.653(1), \quad c=$ 10.852 (2) $\AA, \beta=118.46(1)^{\circ}, V=1087.8 \AA^{3}, Z=4$, $D_{x}=1.69 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $22.60 \mathrm{~cm}^{-1}, F(000)=556, T=298 \mathrm{~K}$, final $R=0.059$ for 1068 unique reflections $[I>3 \sigma(I)]$. The $\mathrm{Co}^{\text {II }}$ ion

0108-2701/92/030542-02\$03.00
is coordinated by four Cl atoms in a tetrahedral geometry. The paraffinic chains which bridge the tetrahedra have a nearly planar zigzag configuration.

Experimental. The blue plate-shaped crystals of $\left[\mathrm{CoCl}_{4}\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\right]$ were grown at room temperature © 1992 International Union of Crystallography

Table 1. Fractional coordinates ($\times 10^{4}$) and equivalent isotropic thermal displacement parameters $\left(\AA^{2} \times 10^{3}\right)$

	$U_{\text {eq }}=\left(8 \pi^{2} / 3\right)$ trace \mathbf{U}.			
	x	y	z	$U_{\text {eq }}$
Co	2450 (1)	3639 (1)	4956 (1)	31 (1)
$\mathrm{Cl}(1)$	3485 (2)	1905 (2)	4616 (2)	36 (1)
$\mathrm{Cl}(2)$	4129 (2)	4994 (2)	6478 (2)	45 (1)
Cl(3)	1210 (2)	4564 (2)	2841 (2)	43 (1)
$\mathrm{Cl}(4)$	1042 (3)	2966 (2)	5868 (3)	53 (1)
N(11)	1699 (7)	2003 (6)	1205 (6)	34 (3)
C(12)	1949 (8)	3570 (8)	-342 (7)	36 (3)
C(13)	2744 (8)	2779 (8)	995 (8)	39 (4)
C(14)	3026 (8)	4381 (8)	-567 (8)	43 (4)
$\mathrm{N}(15)$	2179 (7)	5218 (6)	-1811(6)	40 (3)

from alcohol solution containing 1,3-propanediammonium chloride and $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. A platelet of dimensions $0.12 \times 0.28 \times 0.40 \mathrm{~mm}$ was selected for crystal structure determination. Intensity data were collected using a Nicolet $R 3 M / E$ diffractometer. Cell parameters were obtained by a least-squares method using 25 centred reflections with $5.81<2 \theta<24.95^{\circ}$. Data were collected within $1.5<\theta<30^{\circ}$ using the ω-scan method and were corrected for Lorentzpolarization and absorption effects (transmission coefficients, minimum 0.456, maximum 0.691). The range for h was 0 to 16 , for $k 0$ to 15 and for $l-16$ to 16 . The intensity variation of a standard reflection $(0,0,16)$ was $\pm 2 \%$ about the mean value. The main computer program used was SHELXTL (Sheldrick, 1983). Of the 3568 reflections measured, 3160 were independent; of these, 1608 were observed $[I>3 \sigma(I)$] and were used in the refinement. The structure was solved by the heavy-atom method. Full-matrix leastsquares refinement on F of positional and anisotropic thermal parameters of non-H atoms. 91 parameters were refined. Final $R=0.059, w R=$ 0.056 , maximum $\Delta / \sigma=0.001, w=\left[\sigma^{2}(F)\right]^{-1}$. Maximum, minimum $\Delta \rho$ values in final difference synthesis $0.75,-0.66 \mathrm{e} \AA^{-3} . \mathrm{H}$ atoms were placed in calculated positions and were assigned isotropic thermal parameters $U=0.08 \AA^{2}$. Scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV).

Atomic fractional coordinates and equivalent isotropic thermal parameters for the non- H atoms are listed in Table 1.* Fig. 1 shows a view of the unit-cell contents. Bond lengths and angles are given in Table 2. Atomic numbering scheme and thermal ellipsoids for the non-H atoms are shown in Fig. 2.

[^0]Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$
E.s.d.'s in the least significant digits are given in parentheses.

$\mathrm{Co}-\mathrm{Cl}(1)$	$2.273(2)$	$\mathrm{Co}-\mathrm{Cl}(3)$	$2.258(2)$
$\mathrm{Co}-\mathrm{Cl}(4)$	$2.278(3)$	$\mathrm{Co}-\mathrm{Cl}(2)$	$2.282(2)$
$\mathrm{N}(11)-\mathrm{C}(13)$	$1.493(12)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.538(10)$
$\mathrm{C}(12)-\mathrm{C}(14)$	$1.550(14)$	$\mathrm{C}(14)-\mathrm{N}(15)$	$1.507(10)$
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(3)$	$106.6(1)$	$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(4)$	$106.8(1)$
$\mathrm{Cl}(3)-\mathrm{Co}-\mathrm{Cl}(4)$	$112.9(1)$	$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(2)$	$110.8(1)$
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(2)$	$109.8(1)$	$\mathrm{Cl}(4)-\mathrm{Co}-\mathrm{Cl}(2)$	$109.9(1)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(14)$	$109.6(6)$	$\mathrm{N}(11)-\mathrm{C}(13)-\mathrm{C}(12)$	$109.3(6)$
$\mathrm{C}(12)-\mathrm{C}(14)-\mathrm{N}(15)$	$107.2(6)$		

Fig. 1. View of the unit-cell contents.

Fig. 2. Atomic numbering scheme and thermal ellipsoids for the non-H atoms.

Related literature. The structure of the title compound is similar to that of $\left[\mathrm{NH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{3}\right] \mathrm{ZnCl}_{4}$ (Kallel, Fail, Fuess \& Daoud, 1980). The tetrahedral CoCl_{4}^{2-} anions are interconnected via hydrogen bonding to the 1,3 -propanediammonium groups. However, the mean $\mathrm{Co}-\mathrm{Cl}$ distance is a little less than the corresponding mean $\mathrm{Zn}-\mathrm{Cl}$ bond length in ZnCl_{4}^{2-}. The CoCl_{4}^{2-} tetrahedra show angles ranging from 106.6 (1) to $112.9(1)^{\circ}$ indicating a small distortion from tetrahedral symmetry resulting from hydrogen bonding.

References

Kallel, A., Fail, J., Fuess, H. \& Daoud, A. (1980). Acta Cryst. B36, 2788-2790.
Sheldrick, G. M. (1983). SHELXTL User's Manual. Revision 4. Nicolet XRD Corporation, Maidson, Wisconsin, USA.

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54493 (13 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: MU0180]

